
A Comparison of Clarion
for Windows and Delphi

Clarion for Windows from TopSpeed Corporation and Delphi from
Borland International are both leading edge database development tools
launched within the same year. These tools have more in common than
their age and purpose, however. Clarion and Delphi share ancestry.

Delphi is the latest evolution of Pascal for Windows which evolved from
Turbo Pascal, Borland’s first language product. Five years after Turbo
Pascal appeared, Niels Jensen, Borland’s founder, and the language
development team left Borland to found Jensen and Partners,
International (JPI). JPI purchased their work in progress from Borland
which became the TopSpeed line of optimizing compilers.

Four years later, JPI merged with Clarion Software to form TopSpeed
Corporation. Clarion for Windows was created by merging the Clarion
application generation and database technology with the TopSpeed
compiler technology. While Clarion for Windows and Delphi both
produce database applications, they go about it in very different ways.
The following comments compare Clarion for Windows Version 1.5 to
Delphi Version 1.1:

I. Application Generator

The primary enabling technology in Clarion is a powerful visual template
language that controls a high speed source code generating engine. The
template language also manages the development environment and
provides a user interface for gathering specifications defining application
behavior. Visual templates substantially increase development
productivity by generating source code that otherwise must be written by
hand. Because the Clarion template language is an "open" technology, the
application generator can be continuously augmented with third-party or
user written templates.

The application repository can be customized by "embedding" source
code to produce alternative or additional behavior. As a result,
applications are continuously maintained as repositories, extending the
productivity benefits to their entire useful life.

This white paper was written by Bruce D. Barrington, CEO of TopSpeed Corporation.

Clarion for Windows Information Kit Clarion/Delphi Comparison

Delphi uses "Database Form Experts" to generate database update forms
into an application. Form experts are "onetime" processes. In other
words, any changes to the source code will be lost if the expert is reused.

A. Application Model

The Clarion "application model" treats an application as a single entity
rather than a disconnected set of forms and/or procedures. An application
model consists of application properties along with procedure definitions
that are related logically (as calling sequences) and physically (in source
modules).

Procedure definitions contain formats of the visual elements such as
menus, windows, and reports. In addition, procedure definitions contain
procedure and control properties that specify the behavior required of the
procedure.

The application properties and procedure definitions are maintained in an
application repository. When combined with a data dictionary, the
application repository can be manufactured into a complete, functioning
application with a single mouse click.

Delphi has no application model, application repository, or data
dictionary. Delphi applications are defined by project files that list the
forms and source units to be processed by the compiler.

B. Application Tree

The Clarion application model is maintained in a persistent,
reconfigurable, collapsible, expandable tree structure. Tab controls are
used to reconfigure the tree into four different views: The module view
groups procedures into source modules. The procedure view illustrates
the calling sequence (procedures "branch" from their caller). The
template view groups procedures by template type. And the procedure
name view displays procedures alphabetically. Procedure names are
displayed along with their template type and description.

The application tree is the control center for application development.
The right mouse button produces a pop-up menu to invoke the window
formatter, report formatter, local data editor, embedded source code
editor, or template property dialogs for any procedure. Large projects are
managed by compressing the tree revealing only details that are currently
relevant. Importantly, the configuration of the application tree persists
across design sessions.

Delphi applications are maintained by a project manager dialog listing
the file names and paths of the units (.PAS files) and forms (.DFM files)
that comprise the project. Delphi makes no provision for representing
applications graphically, describing component files, or managing large
projects.

C. Application Wizard

The Clarion "application wizard" creates a fully functional multi-
threaded MDI application from a data dictionary. The MDI frame contains
standard File, Edit, and Help menus along with menus for browsing and

Clarion for Windows Information Kit Clarion/Delphi Comparison

printing files. Browse/form dialogs and report procedures are created for
every file in the dictionary. Browse dialogs feature tab controls that select
the key sequence used to display records. Form dialogs for parent files in
a "one-to-many" relationship feature tab controls that browse selected
child records.

The application wizard fills out the necessary application and procedure
properties and populates windows and reports. The resulting application
can be modified and enhanced using standard Clarion visual tools.
Applications produced by the wizard are indistinguishable from a
developers own work.

Delphi has no similar functionality.

D. Migrating Legacy Code

The Clarion application wizard enables a convenient three step migration
strategy for producing high quality Windows applications from legacy
data: First, the data file structures are imported into a Clarion data
dictionary. Standard Clarion database drivers provide this service for
dBase, Clipper, FoxPro, Btrieve, and Clarion files. The ODBC database
driver can be used for most other data formats. Next, the file relationships
are added. Finally, the application wizard creates the application.

"Fussing" over the dictionary by correcting prompting phrases and
column headings, adding descriptions and pictures, disabling unneeded
keys, etc. substantially improves the quality of the resulting application.

All features of the legacy application may not be reproduced using this
strategy, however, the new application is fully capable of maintaining the
legacy data "in place" concurrently with the legacy application. In
addition, the new application features an attractive "Windows 95 style"
MDI user interface--a result that would be impossible using a code
conversion strategy.

Delphi offers no special strategy for migrating legacy applications.

E. Procedure Generation

Clarion offers a comprehensive library of procedure templates that
automatically generate source code for a wide variety of menu, browse,
form, report, batch, and other types of procedures. Generated procedures
can be modified and enhanced by embedding custom source code. This
way, procedures can be maintained in template form for their entire useful
life, substantially reducing the effort required for documentation,
maintenance, and testing.

Wizards are provided for the Browse, Form, and Report templates that
automatically fill out procedure and control properties and populate
windows and reports. The Browse and Form wizards automatically
produce additional Browse and Form procedures for related files.
Procedures produced by these wizards are indistinguishable from the
developers own work.

Delphi provides "Database Form Experts" that produce source code and
populate windows for accessing and updating databases. These experts

Clarion for Windows Information Kit Clarion/Delphi Comparison

offer horizontal, vertical, or spreadsheet orientation of the form window.
After a Delphi procedure is generated by an expert, it must be forever
maintained as source code because hand-coded modifications are not
recognized by the "Form Expert" in future sessions. Delphi does not
provide experts for creating browse or report procedures.

F. Selective Inheritance

Clarion packages reusable code in the form of templates which generate
"made to order" source code. Features that are not requested in the design
do not exist in the generated code. As a result, template authors can
include any feature they can imagine without producing unwanted
overhead in the resulting application.

Delphi reusable code comes in the form of objects. To reuse any part of
an object, the object must be inherited in its entirety. Swallowing objects
whole when only a nibble would suffice is the primary cause of the
problem known as "object bloat" (the tendency of object-oriented
languages to produce huge executables.).

G. Feature Grafting

A Clarion extension template can be used to "graft" features onto another
template without modifying or inheriting it. The target template remains
encapsulated so that it can be changed without any knowledge of its
"grafted" features. Extension templates that "graft" to the same target
template but were obtained from different sources live harmoniously
without any knowledge about one another. All extension templates, no
matter when they were grafted or in what order, can be used with the
target template.

Under the object model used by Delphi, a class must be inherited in order
to be extended. Accordingly, new features must be prioritized and
packaged like a stack of Russian dolls--each feature encapsulating all
prior features. Features of objects derived from the same base class are
encapsulated against one another and cannot be shared.

H. Incremental Testing

The Clarion application generator temporarily resolves forward procedure
references with empty "ToDo" procedures permitting incremental testing.
In order to test an application, a Delphi programmer must prototype and
implement every referenced procedure.

I. Multiple Document Interface (MDI)

Clarion supports the Multiple Document Interface at all levels. The
application wizard produces MDI applications by default. A "Browse"
procedure is produced for every key defined in the underlying file. These
procedures are placed in separate MDI Windows using separate threads.
As a result, multiple "Browses" can be active at the same time even when
they access the same file. All Clarion procedure templates offer the option
of running in an MDI child window under a separate thread. Delphi
supports MDI only at the lowest level.

Clarion for Windows Information Kit Clarion/Delphi Comparison

J. RelationTree Control

A Clarion list box can display an internal memory queue in the form of
an outline. Standard plus and minus icons control the process of
expanding and collapsing the outline. Each level of the outline can be
associated with a unique file icon and can be displayed in a unique color.

The "RelationTree" control template generates a list box that displays
nested one-to-many relations as a "tree" of records. A record that owns
child records is marked by a plus icon. Clicking on the plus icon expands
the tree by displaying the child records while changing to the minus icon.
Clicking on the minus icon collapses the tree by hiding the child records
while changing to the plus icon. Each file can be associated with its own
file icon, display color, and update procedure.

Consider three files: CUSTOMER, INVOICE, and ITEM. The
CUSTOMER file contains a record for every customer. The INVOICE file
contains a record for every order placed by every customer. And the
ITEM file contains a record for every line item in every order. Initially, a
RelationTree list box displays only customer records. Every customer
with orders is displayed with a plus icon. Clicking the plus icon displays
that customer’s orders. Clicking the plus icon on an order displays its line
items. The right mouse button pops-up an Insert/Change/Delete menu that
invokes an appropriate update procedure for the selected record.

Delphi does not have an outline control.

II. Data Dictionary

The Clarion Data Dictionary serves as a repository for database
information such as database drivers, connection instructions, access
keys, record layouts, file relationships, relational integrity constraints,
data validity rules, display pictures, and visual field representations.
Delphi has no data dictionary.

A. Window Controls

There are many ways to represent data visually in windows and reports. A
window control requires a descriptive prompt label optionally containing
a "hot" letter accelerator. The control may require a "tool tip" (balloon
help) or a description in the status bar. The control itself is an option. For
example, a string field with a fixed set of valid values can be represented
by a group of radio buttons, a list box, or a drop down list box. Numeric,
date, and time fields require input masks and display pictures. The
Clarion data dictionary is the repository for these visual design elements.
Populating windows and reports from the data dictionary saves design
time and produces visual consistency. Since Delphi has no data dictionary,
all visual design elements must be re-entered for every occurrence of a
field.

B. Persistent Relationships

The process of database design involves defining tables and their
relationships. A many-to-one relationship simply reduces the storage
required by eliminating duplicate parent data contained in child records.
When a child record is accessed, data from the parent record is likely to

Clarion for Windows Information Kit Clarion/Delphi Comparison

be accessed also. The Clarion data dictionary serves as a repository for
these relationships. When populating a window or report from a table, all
fields from related tables are also available for use. Templates
automatically generate the necessary code to look up secondary data
Since Delphi has no data dictionary, link fields defining the relationship
must be re-entered every time tables are joined.

C. Referential Integrity

The Clarion data dictionary offers standard referential integrity
constraints to control one-to-many relationships. The Form template
automatically generates the code necessary to implement these rules in
Clarion applications. Even if referential integrity rules have been
implemented on a database server, using triggers and stored procedures, a
good client application avoids such errors by providing its users with an
early warning. Delphi has no data dictionary and offers no technology for
implementing referential integrity constraints.

D. Application Maintenance

A Clarion application repository maintains links into its underlying data
dictionary. Changes to the data dictionary are automatically reflected in
an application every time it is generated. When a Delphi database
changes, Delphi applications must be completely reexamined, manually
correcting every instance of every changed element.

E. Threaded File Access

Clarion database drivers provide safe concurrent database access from
multiple threads within an application. When a file is opened on a new
thread, a new instance of its file control block and record buffer are
created. Concurrency within an application is then controlled using the
same process that provides concurrency protection from other
applications. Such functionality is necessary to produce MDI database
applications. Delphi makes no provision for multi-threaded database
access.

F. Btrieve Support

The Clarion Btrieve database driver provides native Btrieve file access
using the standard Clarion database access grammar. The Btrieve driver
supports both local and client/server versions of Btrieve as well as many
of the extended Btrieve functions. Delphi does not support native Btrieve
access.

III. Language Features

Clarion for Windows uses Clarion, a fourth generation language designed
specifically for desktop business applications. Clarion’s built-in
abstractions for standard business objects such as windows, reports, files,
views, and queues produce source code that is easy to write, easy to read,
and easy to learn. The Clarion language is named for its dictionary
definition:

clarion adj. brilliantly clear

Clarion for Windows Information Kit Clarion/Delphi Comparison

Delphi uses Object Pascal, an object oriented derivative of Turbo Pascal
along with the Visual Component Library, a class library that produces all
windows behavior.

A. Statement Punctuation

Clarion statements coded on a single line require no punctuation. Clarion
compound statements are terminated with a period or "END" keyword.
Clarion assignment statements use the equal sign. All Delphi statements
must be separated with semicolons. Compound statements must be
enclosed within "begin...end" keywords. Delphi assignment statements
require the double key sequence ":=".

B. Picture Strings

Clarion strings optionally contain pictures which automatically format
and deformat the values assigned to and received from the string. Delphi
offers no similar functionality and requires string formatting functions to
produce formatted strings.

C. Decimal Data Type

Delphi does not offer a packed decimal data type. Fractional numbers
must be stored as a 4,6,8, or 10 byte floating point values. Clarion offers
two packed decimal formats containing 1 to 31 decimal digits.

D. BCD Arithmetic

Clarion numeric expressions that do not contain floating point operands
are evaluated using BCD (binary coded decimal) fixed point arithmetic.
This process produces exact results so that a numeric expression such as:

3 +(1/3) - (10/3)

will evaluate exactly to 0. Delphi real expressions use floating point
arithmetic which often introduces errors into financial calculations.

E. Mixed Expressions

Clarion’s "safe typing" permits string, numeric, date, and time data types
to be freely mixed in a numeric and string expressions. Proper data
conversions are automatically generated by the compiler. This design
permits assignment statements such as:

Pi = (6 / 2) & (Circum / Diam / 2 - 3)

The Delphi programmer must remember the data types of all variables
and, if necessary, explicitly typecast them to the data type of the
expression.

F. Foreign Data Types

In order to process data wherever it may exist, Clarion supports a
comprehensive set of data types. In addition to standard integer and real
data types, Clarion supports the following foreign data types which
frequently occur in legacy databases:

Clarion packed decimal
IBM/EBCDIC packed decimal

Clarion for Windows Information Kit Clarion/Delphi Comparison

Microsoft Basic 4 byte floating point
Microsoft Basic 8 byte floating point
Fixed length string
Null terminated (C style) string
Length prefixed (Pascal style) string
Btrieve 4 byte date
Btrieve 4 byte time

In addition to the standard integer and real data types, Delphi supports 6
and 10 byte reals and an 8 byte unsigned integer. Delphi does not support
any foreign data types.

G. Polymorphic Parameters

Clarion supports polymorphic procedure and function parameters. As a
result, Clarion functions and procedures can be written to accept
parameters of any non-structured data type. Polymorphic parameters
passed by value are automatically converted in the calling sequence
generated by the compiler. Polymorphic parameters passed by address are
converted during expression evaluation. The following Clarion program
demonstrates the benefit of this functionality:

MAP
 Divide3(*?) !a polymorphic parameter (?)
END !passed by address (*)

A LONG
B DEC MAL(10,2)
C REAL

CODE
Divide3(A)
Divide3(B)
Divide3(C)
RETURN

Divide3 PROCEDURE(Param)
CODE
Param = 10 / 3
TYPE(Param)
RETURN

The values displayed by this program are 3, 3.33, and 3.33333333333333.
This functionality is part of Clarion’s "safe typing", a far more useful and
forgiving strategy than "strong typing" used by Delphi.

H. String Slicing

A three character substring starting with the second character of a Clarion
string can specified as String[2:4] (meaning characters 2 through 4 of the
string). Such a string slice can be used on either the left or right side of
an assignment statement. The Clarion compiler generates code that
processes string slices "in place" without the overhead produced by
substring functions. Delphi uses less efficient substring functions which
cannot be used as the destination of an assignment statement.

I. Reference Variables

Clarion reference variables provide a "safe" reference to another data
declaration. Reference variables are declared by pre-pending an
ampersand to the target data type (e.g. &BYTE or &FILE). Reference
variables are automatically dereferenced whenever they are used. Delphi

Clarion for Windows Information Kit Clarion/Delphi Comparison

uses pointer variables for this purpose which must be explicitly
dereferenced.

J. Memory Queues

Clarion offers built-in support for memory queues. A Clarion QUEUE
structure declares a record layout to be stored in memory (on the "heap").
Queue elements can be added, deleted, or retrieved either randomly and
sequentially. When a Clarion queue grows to a size that will no longer fit
in memory, it transparently "spills" into a designated disk file. Delphi has
no similar functionality.

K. Structure Piercing

The Clarion "deep assignment" statement moves matching components
from one structure to another as illustrated in the following example:

G1 GROUP,PRE(GP1)
A BYTE
B SHORT

END
G2 GROUP,PRE(GP2)
A BYTE
B SHORT
C LONG

END
CODE
G2 :=: G1 ! s equivalent to GP2:A = GP1:A

! GP2:B = GP1:B

The Clarion CLEAR procedure initializes every component of any
structure or array to the proper binary representation for zero, blank, low
value, or high value. As a result, an entire structure or array can be
cleared, set to low values, or set to high values with a single statement.
Delphi has no similar functionality.

L. Multi-Threading

A Clarion application may contain multiple asynchronous execution
threads operating concurrently. These threads can be used for many
purposes, such as: implementing a multi-document interface (MDI),
preparing and printing reports in the "background", filling "read ahead"
buffers, etc. Clarion also supports a THREAD storage class for producing
variables with a separate instance for each thread. Delphi cannot produce
multi-threaded applications.

M. Run-time Expressions

The Clarion EVALUATE function evaluates a logical, numeric, or string
expression contained in a string that can be modified at run-time. This
functionality can be used for: user defined record filters, run-time
formula entry, etc. Delphi has no similar functionality.

N. International Support

Clarion provides an environment file (appname.ENV) that contains
information necessary to automatically localize any Clarion application.
.ENV settings control the character set, collating sequence, date and time
formats, upper/lower case pairs, standard button text, and standard error

Clarion for Windows Information Kit Clarion/Delphi Comparison

message text. Clarion also provides a comprehensive set of localization
functions and international pictures. Delphi applications must be
localized by explicitly coding string handling functions and by modifying
the .EXE file with a resource editor.

O. Messaging Model

The Clarion messaging model is a simple ACCEPT...END loop which
cycles when an event occurs. EVENT(), FIELD(), and FOCUS()
functions supply the event that occurred, the Window control involved (if
any), and the field that currently has focus. The events are typically
processed by CASE structures. Adding a new event processing routine
simply requires an additional OF ... clause--about the same overhead
required by a single operand IF statement.

A Delphi program is primarily comprised of event processing procedures
that are called by Windows. Each new event requires a new procedure
prototype and a new procedure statement. Procedures are relatively costly
ingredients containing overhead necessary to save and restore registers,
create and destroy stack frames, etc.

P. Database Access

Clarion uses a database neutral grammar for declaring and accessing files
and views of files from a database. As a result, the compiler verifies
proper construction of files, views, and keys and flags invalid field
names. All fields in a file or view are automatically retrieved with a
single record access statement.

The Clarion database grammar assumes that every database possesses a
powerful set of features including relational join, filter, and project
operations as well as scrollable cursors. Clarion database drivers exploit
the functionality available from the underlying database engine and
supplement whatever is missing. As a result, Clarion applications are
automatically optimized for all databases.

Delphi has no database access grammar. Delphi accesses databases
through the Borland Database Engine (BDE) using Tdatabase, Ttable,
and Tquery objects. Relational join, filter, and project operations are
produced by moving a "SELECT" string to the SQL property of Tquery.
Because SQL strings are not processed by the Delphi compiler, database
related programming mistakes generate run-time errors.

Q. Report Generation

Clarion includes a comprehensive report grammar that supports print
preview, graphic forms, page headers and footers, group breaks, totaling
and sub-totaling, and much more. Standard reports are normal
components of a Clarion application.

Delphi does not provide report objects. All reports accompanying a
Delphi application must be developed in and printed by a third party
report writer such as Borland’s ReportSmith.

Clarion for Windows Information Kit Clarion/Delphi Comparison

R. Object Orientation

Clarion has no provision for declaring or deriving object classes.
However, Clarion windows, reports, files, and views are proper objects
with properties that are visible and changeable at run-time. Delphi’s
Object Pascal is a thorough implementation of a single inheritance object
oriented language.

IV. Project System

The application generator automatically creates a TopSpeed project file
which lists the source files, object modules, and DLLs necessary to
"make" the target file. The TopSpeed project system then processes the
project file by compiling source, as necessary, and linking the objects into
an .EXE, .DLL, or .LIB. A windows resource file is produced as a by
product of this process and is appended to the resulting file.

A Delphi project contains a list of Delphi source files (.PAS), Delphi
object files, and Delphi form (.DFM) files. The Delphi project system
compiles and links the source into an .EXE file and processes the form
files to produce a windows resource file.

A. Mixed Language Projects

DLLs for the TopSpeed Modula-2 and C/C++ compilers can be purchased
separately as Clarion add-ons. The project system examines the extension
of each source file to determine which compiler to call. Clarion source
files have an extension of .CLW. C and C++ source files have extensions
of .C and .CPP, respectively. And Modula-2 source files have an extension
of .M2. ("Include" files, such as C headers can have any extension since
they are invoked from standard source files.) Since all TopSpeed
compilers share the same optimizing code generator, their object modules
can be linked together seamlessly. As a result, any components of a
Clarion application can be written in C, C++, or Modula-2.

All source units in a Delphi project must be written in Pascal.

B. Smart Method Linking

Smart Method Linking is a proprietary TopSpeed technology that
eliminates unused virtual methods from executables. Since the Clarion
run-time library is class based, Clarion executables only contain the
library methods actually used. All virtual methods from the source code
and the included library units are present in Delphi executables.

C. Register Parameters

The Clarion compiler generates register-based parameter passing when
calling internal library and user-defined procedures and functions. This
technique reduces stack overhead, increases performance, and decreases
code size. Delphi requires stack-based parameters.

D. Standard Components

Both Clarion and Delphi produce reusable OBJ, LIB, and DLL files. Both
products can use standard Windows DLL files produced by other

Clarion for Windows Information Kit Clarion/Delphi Comparison

development tools. Both products permit full access to the standard
Windows API.

E. "One-piece" Executables

A Clarion application can be packaged as a single executable or split into
an executable and a set of DLLs. The Clarion run-time library (which
includes the print engine) and database drivers can be linked into the
executable, one of the Clarion DLLs, or deployed as stand-alone DLLs.

Delphi applications can also be packaged into a single executable or an
executable with DLLs. However, if the application accesses a database or
prints a report, the Borland Database Engine and ReportSmith must be
deployed separately. The Borland Database Engine consists of a minimum
of 5 DLLs. SQL links average another 12 DLLs. The minimum run-time
installation of ReportSmith produces 56 DLLs. As a result a typical
Delphi database application consists of more than 60 EXE and DLL files.

F. Application Deployment

A typical Clarion database application that prints reports can deployed as
a single executable of 800K or less. If multiple Clarion applications are
deployed, the database drivers and run-time can be packaged separately.
In this case, Clarion applications are typically less than 200K. The run-
time library takes 644K (512K for the 32 bit run-time library). Clarion
database drivers range in size from 20K for the ASCII driver to 160K for
the dBase IV driver. The most popular drivers (Clarion, TopSpeed, and
Btrieve) take about 50K each. Most Clarion applications can be stored on
a single floppy disk.

A similar Delphi application produces a 400K executable. To support
database access, however, the Borland Database Engine must be installed
on the target machine. This installation requires two floppy disks and
produces a directory containing 15 files totaling 2.44MB in size. To print
reports, the ReportSmith run-time must also be installed on the target
machine. A minimum installation (for dBase access only) requires 5
floppy disks and produces a directory containing 56 files totaling 5.19MB
in size. In other words, deploying a typical Delphi application requires 8
floppy disks and occupies at least 8 megabytes on the target hard disk.

G. 32 Bit Support

The Clarion IDE and Clarion applications are word size neutral. As a
result, Clarion runs on all PC versions of Windows and produces native
applications for all PC versions of Windows. The components of the IDE
are 16 bit except for the 32 bit versions of the compiler, linker, and
debugger which are, themselves, 32 bit components. For this reason,
Clarion cannot make 32 bit applications while running under a 16 bit
version of Windows.

By cloning 16 bit versions of Windows 95 components such as Property
Sheets (tabbed dialogs) and Tool Tips (yellow "balloon" help), and by
cloning a 32 bit version of VBX control support, Clarion produces both
16 and 32 bit Windows applications from the same source code and VBX
controls. This strategy permits Clarion developers to provide new 32 bit

Clarion for Windows Information Kit Clarion/Delphi Comparison

versions of their applications while continuing to support identical 16 bit
versions.

As of this writing, Delphi has no 32-bit support.

H. Platform Transition Strategy

PC developers and their end-users run four different versions of
Windows: Windows 3.x, Windows 3.x under OS/2, Windows 95, and
Windows NT. Windows 3.1 and OS/2 share a common 16-bit API.
Windows 95 and Windows NT also share a common 32-bit API. (As of
this writing, the Windows 95 user interface for Windows NT is in beta
test.) 16-bit applications will run under all four versions of Windows. 32-
bit applications will NOT run under OS/2 or Windows 3.1.

OS/2 and Windows 95 are the most popular developer platforms.
Windows 3.1 and Windows 95 are the most popular end-user platforms.
The continuing popularity of OS/2 as a developer platform is a currently
a matter of conjecture. Similarly, the absorption rate of Windows 95 by
end-users is also in question.

Under Windows 95, 16-bit applications are visually indistinguishable
from 32-bit applications. Surprisingly, 16-bit applications are often faster
than 32-bit versions because the Windows 95 video support is
predominantly 16 bit. Windows 95 (followed soon by Windows NT),
however, introduces a new user interface incorporating new controls as
defined by a new style guide. Clarion for Windows Version 1.5
implements the Windows 95 style in its own IDE and in both 16-bit and
32-bit target applications. Importantly, both 16 and 32 bit Clarion
applications can be created from the same application repository and
project file.

With a single development tool that runs on any platform and produces
native applications for any platform, Clarion developers can adopt
Windows 95 style immediately while scheduling their platform migration
plans (and their end-user’s) to any comfortable time in the future.

As of this writing, Delphi has no 32 bit support. However, Borland has
announced that the Delphi32 will produce only 32-bit targets.
Maintaining 16 and 32-bit versions of the same application will require
separate projects to be processed with different versions of Delphi.

I. Debugging

Clarion and Delphi both include full featured Windows hosted debuggers.
Both debuggers offer a "soft mode" where the debugger services repaint
events for the target program while it is halted at a break point. The
Clarion debugger can be used with both EXEs and DLLs, including DLLs
that have been loaded on demand. The Delphi debugger will not debug
DLLs.

J. Internal Performance

Both Clarion and Delphi produce compiled applications with internal
performance similar to applications written in C. Clarion’s optimizing

Clarion for Windows Information Kit Clarion/Delphi Comparison

code generator produces faster internal speed but Delphi’s Visual
Component Library produces faster video performance.

K. Parallel DOS Development

TopSpeed offers both Windows (Clarion for Windows) and DOS (Clarion
for DOS) tools for database development. These products contain similar
(but not identical) application generators, data dictionaries, and project
system. The conversion tools available in both packages permit a
developer to maintain both Windows and DOS versions of a Clarion
application. There is no DOS version of Delphi.

V. Conclusions

Clarion for Windows and Delphi differ markedly in style. CW is a state-
of-the art conventional development environment. The Clarion 4GL has
been updated with the "latest and greatest" abstractions for creating
graphic user interfaces, WYSIWYG reports, and database views in a
conventional language setting. This design leverages legacy software
development skills and reduces the learning curve for adapting to
graphical client/server technology. Clarion’s "crown jewels", however,
are its data dictionary and application generator. These rapid application
development tools provide a productivity boost that is available for the
entire useful life of a database application.

Delphi, on the other hand, is a state-of-the-art implementation of object-
oriented programming. OOP is particularly well suited to window
controls. Delphi comes with a comprehensive set of Object Pascal
window controls available with source code. These controls can be
modified and supplemented within the Delphi environment. The resulting
versatility in producing imaginative custom user interfaces is Delphi’s
strong point.

In addition to developers style, the choice between Clarion and Delphi
should be driven by the type of application to be written. In particular,
certain applications favor Clarion for Windows:

"Shrink-wrapped" Applications

CW is the preferred tool for developing "shrink-wrapped" applications
that contain printed reports or access a database. A Delphi developer must
deploy the Borland Database Engine and/or ReportSmith along with his
application. These products require separate install processes and 2 to 7
additional diskettes.

Financial Applications

Certain financial calculations cannot be implemented reliably using
floating point arithmetic. In particular, rounding currency is a problem.
For example, 25.5 cents should be rounded up to 26 cents. The floating
point representation for this amount should be .255. However, because
exact decimal values sometimes produce irrational floating point values,
this value can actually be .25499999... which will be rounded down to 25
cents. Clarion, which uses exact BCD arithmetic, is preferable to Delphi
for applications that require absolute accuracy.

Clarion for Windows Information Kit Clarion/Delphi Comparison

Accounting "Companion" Applications

Many accounting applications use Btrieve to maintain their underlying
database. Clarion’s Btrieve Database Driver accesses these files using the
native Btrieve API. In addition, the Btrieve driver will create a Clarion
database dictionary from Btrieve record definition (DDF) files. Clarion’s
Btrieve support is far superior to Delphi’s.

Large Database Applications

A large database application contains hundreds of procedures that may
require maintenance for years on end. Clarion visual development tools
are designed to manage extremely large application repositories for their
entire useful life. Changes to a database dictionary are automatically
distributed throughout an application.

This technology is vastly superior to Delphi’s project management
strategy. Delphi experts can only be used once. Program maintenance
must then be performed on generated code. Database changes must be
made manually--a painstaking task that may be unreasonable for large
applications. No abstraction is offered for managing large projects which
exist as a long list of cryptic file names.

Clarion for Windows Information Kit Clarion/Delphi Comparison

